MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. ASTM A369 Grade FP12

2007 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP12 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is ASTM A369 grade FP12.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6 to 8.0
20
Fatigue Strength, MPa 91 to 110
170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 220 to 250
300
Tensile Strength: Ultimate (UTS), MPa 370 to 420
470
Tensile Strength: Yield (Proof), MPa 240 to 270
250

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.8
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1130
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
81
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 33 to 38
17
Strength to Weight: Bending, points 37 to 40
17
Thermal Diffusivity, mm2/s 48
12
Thermal Shock Resistance, points 16 to 19
14

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
0.8 to 1.3
Copper (Cu), % 3.3 to 4.6
0
Iron (Fe), % 0 to 0.8
96.8 to 98.4
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0