MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. ASTM B817 Type I

2007 aluminum belongs to the aluminum alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 5.6 to 8.0
4.0 to 13
Fatigue Strength, MPa 91 to 110
360 to 520
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 370 to 420
770 to 960
Tensile Strength: Yield (Proof), MPa 240 to 270
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
340
Melting Completion (Liquidus), °C 640
1600
Melting Onset (Solidus), °C 510
1550
Specific Heat Capacity, J/kg-K 870
560
Thermal Conductivity, W/m-K 130
7.1
Thermal Expansion, µm/m-K 23
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.1
4.4
Embodied Carbon, kg CO2/kg material 8.0
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
35
Strength to Weight: Axial, points 33 to 38
48 to 60
Strength to Weight: Bending, points 37 to 40
42 to 49
Thermal Diffusivity, mm2/s 48
2.9
Thermal Shock Resistance, points 16 to 19
54 to 68

Alloy Composition

Aluminum (Al), % 87.5 to 95
5.5 to 6.8
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.8
0 to 0.4
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 0 to 0.2
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0 to 0.8
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0
0 to 0.4