MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. EN 1.4835 Stainless Steel

2007 aluminum belongs to the aluminum alloys classification, while EN 1.4835 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is EN 1.4835 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.6 to 8.0
43
Fatigue Strength, MPa 91 to 110
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 220 to 250
520
Tensile Strength: Ultimate (UTS), MPa 370 to 420
750
Tensile Strength: Yield (Proof), MPa 240 to 270
350

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
17
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.0
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1130
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
270
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 33 to 38
27
Strength to Weight: Bending, points 37 to 40
24
Thermal Diffusivity, mm2/s 48
4.0
Thermal Shock Resistance, points 16 to 19
16

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.1
20 to 22
Copper (Cu), % 3.3 to 4.6
0
Iron (Fe), % 0 to 0.8
62 to 68.4
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.2
10 to 12
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.8
1.4 to 2.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0