MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. EN 1.5663 Steel

2007 aluminum belongs to the aluminum alloys classification, while EN 1.5663 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is EN 1.5663 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6 to 8.0
20
Fatigue Strength, MPa 91 to 110
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 220 to 250
470
Tensile Strength: Ultimate (UTS), MPa 370 to 420
750
Tensile Strength: Yield (Proof), MPa 240 to 270
660

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.5
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1130
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
150
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
1150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 33 to 38
26
Strength to Weight: Bending, points 37 to 40
23
Thermal Shock Resistance, points 16 to 19
22

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.6
0
Iron (Fe), % 0 to 0.8
88.6 to 91.2
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.2
8.5 to 10
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.8
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0