MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. EN 2.4642 Nickel

2007 aluminum belongs to the aluminum alloys classification, while EN 2.4642 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is EN 2.4642 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.6 to 8.0
34
Fatigue Strength, MPa 91 to 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 220 to 250
450
Tensile Strength: Ultimate (UTS), MPa 370 to 420
670
Tensile Strength: Yield (Proof), MPa 240 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 510
1320
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
50
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1130
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
180
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 33 to 38
23
Strength to Weight: Bending, points 37 to 40
21
Thermal Diffusivity, mm2/s 48
3.1
Thermal Shock Resistance, points 16 to 19
18

Alloy Composition

Aluminum (Al), % 87.5 to 95
0 to 0.5
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
27 to 31
Copper (Cu), % 3.3 to 4.6
0 to 0.5
Iron (Fe), % 0 to 0.8
7.0 to 11
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0 to 0.5
Nickel (Ni), % 0 to 0.2
55.9 to 66
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0