MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. EN AC-43400 Aluminum

Both 2007 aluminum and EN AC-43400 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 5.6 to 8.0
1.1
Fatigue Strength, MPa 91 to 110
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 370 to 420
270
Tensile Strength: Yield (Proof), MPa 240 to 270
160

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
32
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
54
Strength to Weight: Axial, points 33 to 38
29
Strength to Weight: Bending, points 37 to 40
36
Thermal Diffusivity, mm2/s 48
59
Thermal Shock Resistance, points 16 to 19
12

Alloy Composition

Aluminum (Al), % 87.5 to 95
86 to 90.8
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.6
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 1.0
Lead (Pb), % 0.8 to 1.5
0 to 0.15
Magnesium (Mg), % 0.4 to 1.8
0.2 to 0.5
Manganese (Mn), % 0.5 to 1.0
0 to 0.55
Nickel (Ni), % 0 to 0.2
0 to 0.15
Silicon (Si), % 0 to 0.8
9.0 to 11
Tin (Sn), % 0 to 0.2
0 to 0.050
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.8
0 to 0.15
Residuals, % 0
0 to 0.15