MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. C26800 Brass

2007 aluminum belongs to the aluminum alloys classification, while C26800 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is C26800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 370 to 420
310 to 650

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 640
930
Melting Onset (Solidus), °C 510
900
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
27
Electrical Conductivity: Equal Weight (Specific), % IACS 140
30

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1130
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 44
19
Strength to Weight: Axial, points 33 to 38
11 to 22
Strength to Weight: Bending, points 37 to 40
13 to 21
Thermal Diffusivity, mm2/s 48
37
Thermal Shock Resistance, points 16 to 19
10 to 22

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.6
64 to 68.5
Iron (Fe), % 0 to 0.8
0 to 0.050
Lead (Pb), % 0.8 to 1.5
0 to 0.15
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0 to 0.8
0
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
31 to 36
Residuals, % 0
0 to 0.3