MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. N08020 Stainless Steel

2007 aluminum belongs to the aluminum alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.6 to 8.0
15 to 34
Fatigue Strength, MPa 91 to 110
210 to 240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 220 to 250
380 to 410
Tensile Strength: Ultimate (UTS), MPa 370 to 420
610 to 620
Tensile Strength: Yield (Proof), MPa 240 to 270
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
38
Density, g/cm3 3.1
8.2
Embodied Carbon, kg CO2/kg material 8.0
6.6
Embodied Energy, MJ/kg 150
92
Embodied Water, L/kg 1130
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
180 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 33 to 38
21
Strength to Weight: Bending, points 37 to 40
20
Thermal Diffusivity, mm2/s 48
3.2
Thermal Shock Resistance, points 16 to 19
15

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
19 to 21
Copper (Cu), % 3.3 to 4.6
3.0 to 4.0
Iron (Fe), % 0 to 0.8
29.9 to 44
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0