MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. S15500 Stainless Steel

2007 aluminum belongs to the aluminum alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.6 to 8.0
6.8 to 16
Fatigue Strength, MPa 91 to 110
350 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 220 to 250
540 to 870
Tensile Strength: Ultimate (UTS), MPa 370 to 420
890 to 1490
Tensile Strength: Yield (Proof), MPa 240 to 270
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 190
820
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1130
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
890 to 4460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 33 to 38
32 to 53
Strength to Weight: Bending, points 37 to 40
26 to 37
Thermal Diffusivity, mm2/s 48
4.6
Thermal Shock Resistance, points 16 to 19
30 to 50

Alloy Composition

Aluminum (Al), % 87.5 to 95
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
14 to 15.5
Copper (Cu), % 3.3 to 4.6
2.5 to 4.5
Iron (Fe), % 0 to 0.8
71.9 to 79.9
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.2
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0