MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. S44535 Stainless Steel

2007 aluminum belongs to the aluminum alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.6 to 8.0
28
Fatigue Strength, MPa 91 to 110
210
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
78
Shear Strength, MPa 220 to 250
290
Tensile Strength: Ultimate (UTS), MPa 370 to 420
450
Tensile Strength: Yield (Proof), MPa 240 to 270
290

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.4
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1130
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
110
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 33 to 38
16
Strength to Weight: Bending, points 37 to 40
17
Thermal Diffusivity, mm2/s 48
5.6
Thermal Shock Resistance, points 16 to 19
15

Alloy Composition

Aluminum (Al), % 87.5 to 95
0 to 0.5
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
20 to 24
Copper (Cu), % 3.3 to 4.6
0 to 0.5
Iron (Fe), % 0 to 0.8
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0.3 to 0.8
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
0.030 to 0.2
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.3
0