MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. 224.0 Aluminum

Both 2011 aluminum and 224.0 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 8.5 to 18
4.0 to 10
Fatigue Strength, MPa 74 to 120
86 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 310 to 420
380 to 420
Tensile Strength: Yield (Proof), MPa 140 to 310
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 540
550
Specific Heat Capacity, J/kg-K 870
870
Thermal Conductivity, W/m-K 140 to 170
120
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 45
32
Electrical Conductivity: Equal Weight (Specific), % IACS 100 to 130
95

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.1
3.0
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
540 to 770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
45
Strength to Weight: Axial, points 27 to 37
35 to 38
Strength to Weight: Bending, points 32 to 40
38 to 41
Thermal Diffusivity, mm2/s 51 to 64
47
Thermal Shock Resistance, points 14 to 19
17 to 18

Alloy Composition

Aluminum (Al), % 91.3 to 94.6
93 to 95.2
Bismuth (Bi), % 0.2 to 0.6
0
Copper (Cu), % 5.0 to 6.0
4.5 to 5.5
Iron (Fe), % 0 to 0.7
0 to 0.1
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0.2 to 0.5
Silicon (Si), % 0 to 0.4
0 to 0.060
Titanium (Ti), % 0
0 to 0.35
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.3
0
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.1