MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. AWS E320LR

2011 aluminum belongs to the aluminum alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.5 to 18
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 310 to 420
580

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 540
1360
Specific Heat Capacity, J/kg-K 870
460
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.1
8.2
Embodied Carbon, kg CO2/kg material 7.9
6.2
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1150
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 27 to 37
20
Strength to Weight: Bending, points 32 to 40
19
Thermal Shock Resistance, points 14 to 19
15

Alloy Composition

Aluminum (Al), % 91.3 to 94.6
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 5.0 to 6.0
3.0 to 4.0
Iron (Fe), % 0 to 0.7
32.7 to 42.5
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0