MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. AWS ER80S-Ni1

2011 aluminum belongs to the aluminum alloys classification, while AWS ER80S-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is AWS ER80S-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.5 to 18
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 310 to 420
630
Tensile Strength: Yield (Proof), MPa 140 to 310
530

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 170
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 45
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100 to 130
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.7
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
160
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
740
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 27 to 37
22
Strength to Weight: Bending, points 32 to 40
21
Thermal Diffusivity, mm2/s 51 to 64
11
Thermal Shock Resistance, points 14 to 19
19

Alloy Composition

Aluminum (Al), % 91.3 to 94.6
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 5.0 to 6.0
0 to 0.35
Iron (Fe), % 0 to 0.7
95.3 to 98.8
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0
0 to 0.5