MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. EN 1.0451 Steel

2011 aluminum belongs to the aluminum alloys classification, while EN 1.0451 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is EN 1.0451 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.5 to 18
27
Fatigue Strength, MPa 74 to 120
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 190 to 250
270
Tensile Strength: Ultimate (UTS), MPa 310 to 420
420
Tensile Strength: Yield (Proof), MPa 140 to 310
240

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 170
49
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 45
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100 to 130
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 7.9
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
98
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 27 to 37
15
Strength to Weight: Bending, points 32 to 40
16
Thermal Diffusivity, mm2/s 51 to 64
13
Thermal Shock Resistance, points 14 to 19
13

Alloy Composition

Aluminum (Al), % 91.3 to 94.6
0.020 to 0.060
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 5.0 to 6.0
0 to 0.3
Iron (Fe), % 0 to 0.7
97.2 to 99.58
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0.4 to 1.2
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0