MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. EN 1.5503 Steel

2011 aluminum belongs to the aluminum alloys classification, while EN 1.5503 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.5 to 18
12 to 17
Fatigue Strength, MPa 74 to 120
180 to 280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 190 to 250
270 to 320
Tensile Strength: Ultimate (UTS), MPa 310 to 420
400 to 520
Tensile Strength: Yield (Proof), MPa 140 to 310
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 170
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 45
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100 to 130
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1150
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
200 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 27 to 37
14 to 19
Strength to Weight: Bending, points 32 to 40
15 to 18
Thermal Diffusivity, mm2/s 51 to 64
14
Thermal Shock Resistance, points 14 to 19
12 to 15

Alloy Composition

Aluminum (Al), % 91.3 to 94.6
0
Bismuth (Bi), % 0.2 to 0.6
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.16 to 0.2
Copper (Cu), % 5.0 to 6.0
0 to 0.25
Iron (Fe), % 0 to 0.7
98.4 to 99.239
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0