MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. Grade CY40 Nickel

2011 aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.5 to 18
34
Fatigue Strength, MPa 74 to 120
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 310 to 420
540
Tensile Strength: Yield (Proof), MPa 140 to 310
220

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 540
1300
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140 to 170
14
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 45
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100 to 130
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.1
8.4
Embodied Carbon, kg CO2/kg material 7.9
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
150
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 27 to 37
18
Strength to Weight: Bending, points 32 to 40
18
Thermal Diffusivity, mm2/s 51 to 64
3.7
Thermal Shock Resistance, points 14 to 19
16

Alloy Composition

Aluminum (Al), % 91.3 to 94.6
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 5.0 to 6.0
0
Iron (Fe), % 0 to 0.7
0 to 11
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0