MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. N06007 Nickel

2011 aluminum belongs to the aluminum alloys classification, while N06007 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.5 to 18
38
Fatigue Strength, MPa 74 to 120
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Shear Strength, MPa 190 to 250
470
Tensile Strength: Ultimate (UTS), MPa 310 to 420
690
Tensile Strength: Yield (Proof), MPa 140 to 310
260

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 540
1260
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 140 to 170
10
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.1
8.4
Embodied Carbon, kg CO2/kg material 7.9
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
200
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
170
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 27 to 37
23
Strength to Weight: Bending, points 32 to 40
21
Thermal Diffusivity, mm2/s 51 to 64
2.7
Thermal Shock Resistance, points 14 to 19
18

Alloy Composition

Aluminum (Al), % 91.3 to 94.6
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 5.0 to 6.0
1.5 to 2.5
Iron (Fe), % 0 to 0.7
18 to 21
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0