MakeItFrom.com
Menu (ESC)

2011 Aluminum vs. S44735 Stainless Steel

2011 aluminum belongs to the aluminum alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011 aluminum and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 8.5 to 18
21
Fatigue Strength, MPa 74 to 120
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Shear Strength, MPa 190 to 250
390
Tensile Strength: Ultimate (UTS), MPa 310 to 420
630
Tensile Strength: Yield (Proof), MPa 140 to 310
460

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
21
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 7.9
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 52
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
26
Strength to Weight: Axial, points 27 to 37
23
Strength to Weight: Bending, points 32 to 40
21
Thermal Shock Resistance, points 14 to 19
20

Alloy Composition

Aluminum (Al), % 91.3 to 94.6
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 5.0 to 6.0
0
Iron (Fe), % 0 to 0.7
60.7 to 68.4
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0