MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. 5059 Aluminum

Both 2014 aluminum and 5059 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.5 to 16
11 to 25
Fatigue Strength, MPa 90 to 160
170 to 240
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 130 to 290
220 to 250
Tensile Strength: Ultimate (UTS), MPa 190 to 500
350 to 410
Tensile Strength: Yield (Proof), MPa 100 to 440
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 210
210
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 510
510
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
29
Electrical Conductivity: Equal Weight (Specific), % IACS 120
95

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.1
9.1
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1130
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
220 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 18 to 46
36 to 42
Strength to Weight: Bending, points 25 to 46
41 to 45
Thermal Diffusivity, mm2/s 58
44
Thermal Shock Resistance, points 8.4 to 22
16 to 18

Alloy Composition

Aluminum (Al), % 90.4 to 95
89.9 to 94
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 3.9 to 5.0
0 to 0.25
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 0.2 to 0.8
5.0 to 6.0
Manganese (Mn), % 0.4 to 1.2
0.6 to 1.2
Silicon (Si), % 0.5 to 1.2
0 to 0.45
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0.4 to 0.9
Zirconium (Zr), % 0 to 0.2
0.050 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants