MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. 50Cr-50Ni-Cb Alloy

2014 aluminum belongs to the aluminum alloys classification, while 50Cr-50Ni-Cb alloy belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is 50Cr-50Ni-Cb alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.5 to 16
5.6
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 190 to 500
620
Tensile Strength: Yield (Proof), MPa 100 to 440
390

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.1
9.2
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
30
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 18 to 46
21
Strength to Weight: Bending, points 25 to 46
20
Thermal Shock Resistance, points 8.4 to 22
14

Alloy Composition

Aluminum (Al), % 90.4 to 95
0 to 0.25
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
47 to 52
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.7
0 to 1.0
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 0.3
Nickel (Ni), % 0
43.3 to 51.6
Niobium (Nb), % 0
1.4 to 1.7
Nitrogen (N), % 0
0 to 0.16
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0 to 0.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0