MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. ASTM A182 Grade F12 Class 2

2014 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F12 class 2 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is ASTM A182 grade F12 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.5 to 16
22
Fatigue Strength, MPa 90 to 160
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 130 to 290
340
Tensile Strength: Ultimate (UTS), MPa 190 to 500
540
Tensile Strength: Yield (Proof), MPa 100 to 440
310

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 210
430
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.8
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1130
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
100
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 18 to 46
19
Strength to Weight: Bending, points 25 to 46
19
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 8.4 to 22
16

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0 to 0.1
0.8 to 1.3
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.7
96.4 to 98.3
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0.3 to 0.8
Molybdenum (Mo), % 0
0.44 to 0.65
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0.1 to 0.6
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0