MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. EN 1.4482 Stainless Steel

2014 aluminum belongs to the aluminum alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.5 to 16
34
Fatigue Strength, MPa 90 to 160
420 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 130 to 290
510 to 530
Tensile Strength: Ultimate (UTS), MPa 190 to 500
770 to 800
Tensile Strength: Yield (Proof), MPa 100 to 440
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1130
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
690 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 18 to 46
28 to 29
Strength to Weight: Bending, points 25 to 46
24 to 25
Thermal Diffusivity, mm2/s 58
4.0
Thermal Shock Resistance, points 8.4 to 22
21 to 22

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19.5 to 21.5
Copper (Cu), % 3.9 to 5.0
0 to 1.0
Iron (Fe), % 0 to 0.7
66.1 to 74.9
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0