MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. EN 1.4823 Stainless Steel

2014 aluminum belongs to the aluminum alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.5 to 16
3.4
Fatigue Strength, MPa 90 to 160
130
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 190 to 500
620
Tensile Strength: Yield (Proof), MPa 100 to 440
290

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.1
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1130
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
17
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 18 to 46
23
Strength to Weight: Bending, points 25 to 46
21
Thermal Diffusivity, mm2/s 58
4.5
Thermal Shock Resistance, points 8.4 to 22
17

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.1
25 to 28
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.7
60.9 to 70.7
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0