MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. EN 1.4877 Stainless Steel

2014 aluminum belongs to the aluminum alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.5 to 16
36
Fatigue Strength, MPa 90 to 160
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 130 to 290
420
Tensile Strength: Ultimate (UTS), MPa 190 to 500
630
Tensile Strength: Yield (Proof), MPa 100 to 440
200

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1150
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.1
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1130
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
180
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 18 to 46
22
Strength to Weight: Bending, points 25 to 46
20
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 8.4 to 22
15

Alloy Composition

Aluminum (Al), % 90.4 to 95
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.7
36.4 to 42.3
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0