MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. EN 1.4901 Stainless Steel

2014 aluminum belongs to the aluminum alloys classification, while EN 1.4901 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.5 to 16
19
Fatigue Strength, MPa 90 to 160
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 130 to 290
460
Tensile Strength: Ultimate (UTS), MPa 190 to 500
740
Tensile Strength: Yield (Proof), MPa 100 to 440
490

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 210
650
Melting Completion (Liquidus), °C 630
1490
Melting Onset (Solidus), °C 510
1450
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1130
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
120
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
620
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 18 to 46
26
Strength to Weight: Bending, points 25 to 46
23
Thermal Diffusivity, mm2/s 58
6.9
Thermal Shock Resistance, points 8.4 to 22
23

Alloy Composition

Aluminum (Al), % 90.4 to 95
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0 to 0.1
8.5 to 9.5
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.7
85.8 to 89.1
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0 to 0.010
Residuals, % 0 to 0.15
0