MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. EN AC-45300 Aluminum

Both 2014 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.5 to 16
1.0 to 2.8
Fatigue Strength, MPa 90 to 160
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 190 to 500
220 to 290
Tensile Strength: Yield (Proof), MPa 100 to 440
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
36
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
160 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 18 to 46
23 to 29
Strength to Weight: Bending, points 25 to 46
30 to 35
Thermal Diffusivity, mm2/s 58
60
Thermal Shock Resistance, points 8.4 to 22
10 to 13

Alloy Composition

Aluminum (Al), % 90.4 to 95
90.2 to 94.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
1.0 to 1.5
Iron (Fe), % 0 to 0.7
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.2 to 0.8
0.35 to 0.65
Manganese (Mn), % 0.4 to 1.2
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.5 to 1.2
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.15
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants