MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. Grade CY40 Nickel

2014 aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.5 to 16
34
Fatigue Strength, MPa 90 to 160
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 190 to 500
540
Tensile Strength: Yield (Proof), MPa 100 to 440
220

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 210
960
Melting Completion (Liquidus), °C 630
1350
Melting Onset (Solidus), °C 510
1300
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.1
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
150
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 18 to 46
18
Strength to Weight: Bending, points 25 to 46
18
Thermal Diffusivity, mm2/s 58
3.7
Thermal Shock Resistance, points 8.4 to 22
16

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0 to 0.1
14 to 17
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.7
0 to 11
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.5
Nickel (Ni), % 0
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.2
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0