MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. Titanium 15-3-3-3

2014 aluminum belongs to the aluminum alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 1.5 to 16
5.7 to 8.0
Fatigue Strength, MPa 90 to 160
610 to 710
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
39
Shear Strength, MPa 130 to 290
660 to 810
Tensile Strength: Ultimate (UTS), MPa 190 to 500
1120 to 1390
Tensile Strength: Yield (Proof), MPa 100 to 440
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 210
430
Melting Completion (Liquidus), °C 630
1620
Melting Onset (Solidus), °C 510
1560
Specific Heat Capacity, J/kg-K 870
520
Thermal Conductivity, W/m-K 150
8.1
Thermal Expansion, µm/m-K 23
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
40
Density, g/cm3 3.0
4.8
Embodied Carbon, kg CO2/kg material 8.1
59
Embodied Energy, MJ/kg 150
950
Embodied Water, L/kg 1130
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
78 to 89
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 46
32
Strength to Weight: Axial, points 18 to 46
64 to 80
Strength to Weight: Bending, points 25 to 46
50 to 57
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 8.4 to 22
79 to 98

Alloy Composition

Aluminum (Al), % 90.4 to 95
2.5 to 3.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
2.5 to 3.5
Copper (Cu), % 3.9 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.7
0 to 0.25
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 0.5 to 1.2
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0 to 0.15
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.4