MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. C10800 Copper

2014 aluminum belongs to the aluminum alloys classification, while C10800 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is C10800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 1.5 to 16
4.0 to 50
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Shear Strength, MPa 130 to 290
150 to 200
Tensile Strength: Ultimate (UTS), MPa 190 to 500
220 to 380
Tensile Strength: Yield (Proof), MPa 100 to 440
75 to 370

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 630
1080
Melting Onset (Solidus), °C 510
1080
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 150
350
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
92
Electrical Conductivity: Equal Weight (Specific), % IACS 120
92

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.0
9.0
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
15 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
24 to 600
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 18 to 46
6.8 to 12
Strength to Weight: Bending, points 25 to 46
9.1 to 13
Thermal Diffusivity, mm2/s 58
100
Thermal Shock Resistance, points 8.4 to 22
7.8 to 13

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
99.95 to 99.995
Iron (Fe), % 0 to 0.7
0
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0
Phosphorus (P), % 0
0.0050 to 0.012
Silicon (Si), % 0.5 to 1.2
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0