MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. C48600 Brass

2014 aluminum belongs to the aluminum alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 1.5 to 16
20 to 25
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
39
Shear Strength, MPa 130 to 290
180 to 230
Tensile Strength: Ultimate (UTS), MPa 190 to 500
280 to 360
Tensile Strength: Yield (Proof), MPa 100 to 440
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 210
120
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 510
890
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
25
Electrical Conductivity: Equal Weight (Specific), % IACS 120
28

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
61 to 140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 18 to 46
9.5 to 12
Strength to Weight: Bending, points 25 to 46
12 to 14
Thermal Diffusivity, mm2/s 58
36
Thermal Shock Resistance, points 8.4 to 22
9.3 to 12

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Arsenic (As), % 0
0.020 to 0.25
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
59 to 62
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0
1.0 to 2.5
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0
Silicon (Si), % 0.5 to 1.2
0
Tin (Sn), % 0
0.3 to 1.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
33.4 to 39.7
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.4