MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. C82000 Copper

2014 aluminum belongs to the aluminum alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 1.5 to 16
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
45
Tensile Strength: Ultimate (UTS), MPa 190 to 500
350 to 690
Tensile Strength: Yield (Proof), MPa 100 to 440
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 210
220
Melting Completion (Liquidus), °C 630
1090
Melting Onset (Solidus), °C 510
970
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 150
260
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
45
Electrical Conductivity: Equal Weight (Specific), % IACS 120
46

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.1
5.0
Embodied Energy, MJ/kg 150
77
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
80 to 1120
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 18 to 46
11 to 22
Strength to Weight: Bending, points 25 to 46
12 to 20
Thermal Diffusivity, mm2/s 58
76
Thermal Shock Resistance, points 8.4 to 22
12 to 24

Alloy Composition

Aluminum (Al), % 90.4 to 95
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0 to 0.1
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 3.9 to 5.0
95.2 to 97.4
Iron (Fe), % 0 to 0.7
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.5 to 1.2
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5