MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. A356.0 Aluminum

Both 2014A aluminum and A356.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 6.2 to 16
3.0 to 6.0
Fatigue Strength, MPa 93 to 150
50 to 90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 210 to 490
160 to 270
Tensile Strength: Yield (Proof), MPa 110 to 430
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
49 to 300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
53
Strength to Weight: Axial, points 19 to 45
17 to 29
Strength to Weight: Bending, points 26 to 46
25 to 36
Thermal Diffusivity, mm2/s 55
64
Thermal Shock Resistance, points 9.0 to 22
7.6 to 13

Alloy Composition

Aluminum (Al), % 90.8 to 95
91.1 to 93.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 0.2 to 0.8
0.25 to 0.45
Manganese (Mn), % 0.4 to 1.2
0 to 0.1
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0.5 to 0.9
6.5 to 7.5
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants