MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. ACI-ASTM CK20 Steel

2014A aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is ACI-ASTM CK20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 6.2 to 16
37
Fatigue Strength, MPa 93 to 150
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 210 to 490
530
Tensile Strength: Yield (Proof), MPa 110 to 430
260

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
25
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.1
4.4
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
160
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 19 to 45
19
Strength to Weight: Bending, points 26 to 46
19
Thermal Diffusivity, mm2/s 55
3.7
Thermal Shock Resistance, points 9.0 to 22
13

Alloy Composition

Aluminum (Al), % 90.8 to 95
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
23 to 27
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.5
46.7 to 58
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.1
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 0.9
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0