MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. EN 1.7710 Steel

2014A aluminum belongs to the aluminum alloys classification, while EN 1.7710 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is EN 1.7710 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2 to 16
6.8 to 11
Fatigue Strength, MPa 93 to 150
500 to 620
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 210 to 490
930 to 1070
Tensile Strength: Yield (Proof), MPa 110 to 430
800 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 210
440
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.2
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1140
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
1680 to 2970
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 45
33 to 38
Strength to Weight: Bending, points 26 to 46
27 to 30
Thermal Diffusivity, mm2/s 55
11
Thermal Shock Resistance, points 9.0 to 22
27 to 31

Alloy Composition

Aluminum (Al), % 90.8 to 95
0
Carbon (C), % 0
0.12 to 0.18
Chromium (Cr), % 0 to 0.1
1.3 to 1.8
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.5
95.1 to 97
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0.6 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.0
Nickel (Ni), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 0.9
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants