MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. EN 1.8873 Steel

2014A aluminum belongs to the aluminum alloys classification, while EN 1.8873 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is EN 1.8873 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2 to 16
19
Fatigue Strength, MPa 93 to 150
340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 130 to 290
410
Tensile Strength: Ultimate (UTS), MPa 210 to 490
660
Tensile Strength: Yield (Proof), MPa 110 to 430
490

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 210
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.2
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1140
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
110
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 45
23
Strength to Weight: Bending, points 26 to 46
21
Thermal Diffusivity, mm2/s 55
10
Thermal Shock Resistance, points 9.0 to 22
19

Alloy Composition

Aluminum (Al), % 90.8 to 95
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.1
0 to 1.0
Copper (Cu), % 3.9 to 5.0
0 to 0.3
Iron (Fe), % 0 to 0.5
93.6 to 100
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.1
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 0.9
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0 to 0.15
Residuals, % 0 to 0.15
0