MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. EN 1.8893 Steel

2014A aluminum belongs to the aluminum alloys classification, while EN 1.8893 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2 to 16
16
Fatigue Strength, MPa 93 to 150
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 130 to 290
510
Tensile Strength: Ultimate (UTS), MPa 210 to 490
830
Tensile Strength: Yield (Proof), MPa 110 to 430
720

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 210
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.9
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1140
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
130
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
1370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 45
29
Strength to Weight: Bending, points 26 to 46
25
Thermal Diffusivity, mm2/s 55
11
Thermal Shock Resistance, points 9.0 to 22
24

Alloy Composition

Aluminum (Al), % 90.8 to 95
0.020 to 0.060
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 3.9 to 5.0
0 to 0.2
Iron (Fe), % 0 to 0.5
95.6 to 98
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
1.4 to 1.7
Molybdenum (Mo), % 0
0.3 to 0.45
Nickel (Ni), % 0 to 0.1
0.3 to 0.7
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 0.9
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0