MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. EN AC-21200 Aluminum

Both 2014A aluminum and EN AC-21200 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 6.2 to 16
3.9 to 6.2
Fatigue Strength, MPa 93 to 150
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 210 to 490
410 to 440
Tensile Strength: Yield (Proof), MPa 110 to 430
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 510
550
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
500 to 930
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 19 to 45
38 to 40
Strength to Weight: Bending, points 26 to 46
41 to 43
Thermal Diffusivity, mm2/s 55
49
Thermal Shock Resistance, points 9.0 to 22
18 to 19

Alloy Composition

Aluminum (Al), % 90.8 to 95
93.3 to 95.7
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
4.0 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.2 to 0.8
0.15 to 0.5
Manganese (Mn), % 0.4 to 1.2
0.2 to 0.5
Nickel (Ni), % 0 to 0.1
0 to 0.050
Silicon (Si), % 0.5 to 0.9
0 to 0.1
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.1

Comparable Variants