MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. EN AC-43400 Aluminum

Both 2014A aluminum and EN AC-43400 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
72
Elongation at Break, % 6.2 to 16
1.1
Fatigue Strength, MPa 93 to 150
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 210 to 490
270
Tensile Strength: Yield (Proof), MPa 110 to 430
160

Thermal Properties

Latent Heat of Fusion, J/g 400
540
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.1
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
54
Strength to Weight: Axial, points 19 to 45
29
Strength to Weight: Bending, points 26 to 46
36
Thermal Diffusivity, mm2/s 55
59
Thermal Shock Resistance, points 9.0 to 22
12

Alloy Composition

Aluminum (Al), % 90.8 to 95
86 to 90.8
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.2 to 0.8
0.2 to 0.5
Manganese (Mn), % 0.4 to 1.2
0 to 0.55
Nickel (Ni), % 0 to 0.1
0 to 0.15
Silicon (Si), % 0.5 to 0.9
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.15
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.15