MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. C67400 Bronze

2014A aluminum belongs to the aluminum alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 6.2 to 16
22 to 28
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
41
Shear Strength, MPa 130 to 290
310 to 350
Tensile Strength: Ultimate (UTS), MPa 210 to 490
480 to 610
Tensile Strength: Yield (Proof), MPa 110 to 430
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 210
130
Melting Completion (Liquidus), °C 640
890
Melting Onset (Solidus), °C 510
870
Specific Heat Capacity, J/kg-K 870
400
Thermal Conductivity, W/m-K 150
100
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
23
Electrical Conductivity: Equal Weight (Specific), % IACS 110
26

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.8
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
300 to 660
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 19 to 45
17 to 22
Strength to Weight: Bending, points 26 to 46
17 to 20
Thermal Diffusivity, mm2/s 55
32
Thermal Shock Resistance, points 9.0 to 22
16 to 20

Alloy Composition

Aluminum (Al), % 90.8 to 95
0.5 to 2.0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
57 to 60
Iron (Fe), % 0 to 0.5
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
2.0 to 3.5
Nickel (Ni), % 0 to 0.1
0 to 0.25
Silicon (Si), % 0.5 to 0.9
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
31.1 to 40
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5