MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. C69400 Brass

2014A aluminum belongs to the aluminum alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 6.2 to 16
17
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Shear Strength, MPa 130 to 290
350
Tensile Strength: Ultimate (UTS), MPa 210 to 490
570
Tensile Strength: Yield (Proof), MPa 110 to 430
270

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 640
920
Melting Onset (Solidus), °C 510
820
Specific Heat Capacity, J/kg-K 870
410
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
80
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
340
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 19 to 45
19
Strength to Weight: Bending, points 26 to 46
18
Thermal Diffusivity, mm2/s 55
7.7
Thermal Shock Resistance, points 9.0 to 22
20

Alloy Composition

Aluminum (Al), % 90.8 to 95
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
80 to 83
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0.5 to 0.9
3.5 to 4.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
11.5 to 16.5
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5