MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. N08135 Stainless Steel

2014A aluminum belongs to the aluminum alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 6.2 to 16
46
Fatigue Strength, MPa 93 to 150
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 130 to 290
400
Tensile Strength: Ultimate (UTS), MPa 210 to 490
570
Tensile Strength: Yield (Proof), MPa 110 to 430
240

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 870
460
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
39
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.1
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1140
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
210
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 45
19
Strength to Weight: Bending, points 26 to 46
19
Thermal Shock Resistance, points 9.0 to 22
13

Alloy Composition

Aluminum (Al), % 90.8 to 95
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
20.5 to 23.5
Copper (Cu), % 3.9 to 5.0
0 to 0.7
Iron (Fe), % 0 to 0.5
30.2 to 42.3
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.1
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 0.9
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0