MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. S30601 Stainless Steel

2014A aluminum belongs to the aluminum alloys classification, while S30601 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is S30601 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2 to 16
37
Fatigue Strength, MPa 93 to 150
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 130 to 290
450
Tensile Strength: Ultimate (UTS), MPa 210 to 490
660
Tensile Strength: Yield (Proof), MPa 110 to 430
300

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Maximum Temperature: Mechanical, °C 210
950
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 510
1310
Specific Heat Capacity, J/kg-K 870
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.1
3.9
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1140
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
200
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 19 to 45
24
Strength to Weight: Bending, points 26 to 46
22
Thermal Shock Resistance, points 9.0 to 22
16

Alloy Composition

Aluminum (Al), % 90.8 to 95
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
17 to 18
Copper (Cu), % 3.9 to 5.0
0 to 0.35
Iron (Fe), % 0 to 0.5
56.9 to 60.5
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.1
17 to 18
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 0.9
5.0 to 5.6
Sulfur (S), % 0
0 to 0.013
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0