MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. S31266 Stainless Steel

2014A aluminum belongs to the aluminum alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 6.2 to 16
40
Fatigue Strength, MPa 93 to 150
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 130 to 290
590
Tensile Strength: Ultimate (UTS), MPa 210 to 490
860
Tensile Strength: Yield (Proof), MPa 110 to 430
470

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.1
6.5
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1140
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
290
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 45
29
Strength to Weight: Bending, points 26 to 46
24
Thermal Diffusivity, mm2/s 55
3.1
Thermal Shock Resistance, points 9.0 to 22
18

Alloy Composition

Aluminum (Al), % 90.8 to 95
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
23 to 25
Copper (Cu), % 3.9 to 5.0
1.0 to 2.5
Iron (Fe), % 0 to 0.5
34.1 to 46
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0 to 0.1
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0