MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. S44537 Stainless Steel

2014A aluminum belongs to the aluminum alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 6.2 to 16
21
Fatigue Strength, MPa 93 to 150
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 130 to 290
320
Tensile Strength: Ultimate (UTS), MPa 210 to 490
510
Tensile Strength: Yield (Proof), MPa 110 to 430
360

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
3.4
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1140
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
95
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 1300
320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 19 to 45
18
Strength to Weight: Bending, points 26 to 46
18
Thermal Diffusivity, mm2/s 55
5.6
Thermal Shock Resistance, points 9.0 to 22
17

Alloy Composition

Aluminum (Al), % 90.8 to 95
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
20 to 24
Copper (Cu), % 3.9 to 5.0
0 to 0.5
Iron (Fe), % 0 to 0.5
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 0.8
Nickel (Ni), % 0 to 0.1
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.5 to 0.9
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0 to 0.15
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0