MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. S45503 Stainless Steel

2014A aluminum belongs to the aluminum alloys classification, while S45503 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.2 to 16
4.6 to 6.8
Fatigue Strength, MPa 93 to 150
710 to 800
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 130 to 290
940 to 1070
Tensile Strength: Ultimate (UTS), MPa 210 to 490
1610 to 1850
Tensile Strength: Yield (Proof), MPa 110 to 430
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 210
760
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
3.4
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1140
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
82 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 45
57 to 65
Strength to Weight: Bending, points 26 to 46
39 to 43
Thermal Shock Resistance, points 9.0 to 22
56 to 64

Alloy Composition

Aluminum (Al), % 90.8 to 95
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
11 to 12.5
Copper (Cu), % 3.9 to 5.0
1.5 to 2.5
Iron (Fe), % 0 to 0.5
72.4 to 78.9
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.1
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.5 to 0.9
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
1.0 to 1.4
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0