MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. ACI-ASTM CB30 Steel

2017 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 190 to 430
500
Tensile Strength: Yield (Proof), MPa 76 to 260
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 190
940
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1140
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 17 to 40
18
Strength to Weight: Bending, points 24 to 42
18
Thermal Diffusivity, mm2/s 56
5.6
Thermal Shock Resistance, points 7.9 to 18
17

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 3.5 to 4.5
0 to 1.2
Iron (Fe), % 0 to 0.7
72.9 to 82
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0