MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. AISI 410 Stainless Steel

2017 aluminum belongs to the aluminum alloys classification, while AISI 410 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is AISI 410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 12 to 18
16 to 22
Fatigue Strength, MPa 90 to 130
190 to 350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 130 to 260
330 to 470
Tensile Strength: Ultimate (UTS), MPa 190 to 430
520 to 770
Tensile Strength: Yield (Proof), MPa 76 to 260
290 to 580

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 190
710
Melting Completion (Liquidus), °C 640
1530
Melting Onset (Solidus), °C 510
1480
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1140
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
97 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
210 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 17 to 40
19 to 28
Strength to Weight: Bending, points 24 to 42
19 to 24
Thermal Diffusivity, mm2/s 56
8.1
Thermal Shock Resistance, points 7.9 to 18
18 to 26

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0 to 0.1
11.5 to 13.5
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
83.5 to 88.4
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants