MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. ASTM A182 Grade F12 Class 1

2017 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F12 class 1 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is ASTM A182 grade F12 class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 12 to 18
23
Fatigue Strength, MPa 90 to 130
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 130 to 260
300
Tensile Strength: Ultimate (UTS), MPa 190 to 430
470
Tensile Strength: Yield (Proof), MPa 76 to 260
250

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1140
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
91
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 17 to 40
17
Strength to Weight: Bending, points 24 to 42
17
Thermal Diffusivity, mm2/s 56
12
Thermal Shock Resistance, points 7.9 to 18
14

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
0.8 to 1.3
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
96.8 to 98.4
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0