MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. EN 1.4849 Stainless Steel

2017 aluminum belongs to the aluminum alloys classification, while EN 1.4849 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is EN 1.4849 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 12 to 18
4.5
Fatigue Strength, MPa 90 to 130
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 190 to 430
480
Tensile Strength: Yield (Proof), MPa 76 to 260
250

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
1020
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 510
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
42
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
7.1
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
18
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 17 to 40
17
Strength to Weight: Bending, points 24 to 42
17
Thermal Diffusivity, mm2/s 56
3.2
Thermal Shock Resistance, points 7.9 to 18
11

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
32.6 to 43.5
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
36 to 39
Niobium (Nb), % 0
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0