MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. EN 1.5525 Steel

2017 aluminum belongs to the aluminum alloys classification, while EN 1.5525 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is EN 1.5525 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 12 to 18
11 to 21
Fatigue Strength, MPa 90 to 130
210 to 310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 130 to 260
310 to 350
Tensile Strength: Ultimate (UTS), MPa 190 to 430
440 to 1440
Tensile Strength: Yield (Proof), MPa 76 to 260
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
50
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1140
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
44 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
240 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 17 to 40
16 to 51
Strength to Weight: Bending, points 24 to 42
16 to 36
Thermal Diffusivity, mm2/s 56
13
Thermal Shock Resistance, points 7.9 to 18
13 to 42

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 3.5 to 4.5
0 to 0.25
Iron (Fe), % 0 to 0.7
97.7 to 98.9
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0